
© 2014 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified, or distributed in whole or in part without the express consent of Amazon.com, Inc.

Dynamic Content Acceleration:
Lightning-Fast Web Apps with
Amazon CloudFront and 
Amazon Route 53
Constantin Gonzalez, Solutions Architect
Amazon Web Services Germany GmbH



Any Web Application Must Have…

• Tight Security
• High Availability
• High Performance



Why Does Performance Matter?
• More Page Views
• Better Customer Experience
• Higher Conversion Rates



How Much Does Performance Matter?



Where Does Performance Matter?

80%
of the end user

latency
comes from the
front-end



How to Improve Performance?
A Typical Web Application Has …

• Static or Re-Usable Content
• Dynamic or Unique Content



Static or Re-Usable Content
Can be cached (high TTLs or low TTLs)

CSS JavaScript HTML



Typical Architecture



Dynamic or Unique Content
Cannot be cached – but affects 100% of your viewers!



Why Not…?



How Can Amazon CloudFront Help?
• TCP/IP optimizations for the network path
• Keep-Alive connections to reduce RTT
• SSL termination close to viewers
• POST/PUT upload optimizations
• Latency Based Routing
• Low prices, same as static content delivery!





Unique or Reusable Content?



Static or Reusable
Content that does not change for a given period of time

t0 t1



Dynamic or Unique
Content that changes as soon as it is created

t0 t1



Example



Example
Index.jsp (dynamic)

Images (static)



Example

. sec



Page Load Time?

. sec



Goal:

. sec



Introduction to Waterfall Graphs



Waterfall Graphs



What Happens?

Typing the address Browser renders



Understanding Waterfall Graphs

DNS 
Lookup

TCP 
Connection

Time to First 
Byte

Content 
Download



Understanding Waterfall Graphs

Index.jsp



Optimizing Static Content



Caching

User Request A

Edge LocationOrigin



Caching

User Request A

Edge LocationOrigin

GET



Caching

User Request A

Edge LocationOrigin

GET

GET



Caching

User Request A

Edge LocationOrigin

GET

GET

Image.jpg



Caching

User Request A

Edge LocationOrigin

GET

GET

Image.jpg Image.jpg



Caching

User Request B

Edge LocationOrigin

GET



Caching

User Request B

Edge LocationOrigin

GET

Image.jpg



Optimizing Static Content with Caching
• Brings Content Closer to Your Users



Optimizing Static Content with Caching
• Brings Content Closer to Your Users 
• Improves Experience and Performance



Optimizing Static Content with Caching
• Brings Content Closer to Your Users 
• Improves Experience and Performance
• Offloads Your Infrastructure



THE BERLINER PHILHARMONIKER’S
DIGITAL CONCERT HALL

Alexander D. McWilliam
Director Software Development

Berlin Phil Media GmbH









Our Audience
• 400,000 registered users
• from 100 different countries
• aged 18 to 88

World
15%

EU
15%

Japan
20%

USA
20%

Germany
30%



Our Content
• 8 bit rates up to 2,500 kbps
• 100 terabytes of video traffic per month
• 2.5 terabytes of video library storage
• Delivery via HLS and progressive download



• Always 12-month up front commitments
• Insufficient caching performance
• Black box between us and our customers

• No commitments
•Hopefully better caching performance
• Extensive documentation

Other CDNs vs. Cloudfront



Our First Cloud (progressive download only)

CloudfrontS3



Our Second Cloud (progressive download + streaming)

CloudfrontMedia 
Server

S3



Our Second Cloud (progressive download + streaming)

S3 CloudfrontMedia 
Server

EBS



Verdict
• Cheaper
• More fun implementing
• Slightly better performance

FAIL



Why did it not work?
• We have too many objects and too large objects*
• We have too few users
• dispersed too far around the planet

…resulting in too many CACHE MISSES.

*HLS: 200,000 different objects / progressive download: objects over 1GB



All CDNs assume that a sufficiently large number of users
are requesting a sufficiently small number of objects.



The first user is the pawn.



One origin is not enough 



If the user can’t come to us
we must go to the user.



Our Third Cloud – with Route53



Challenges
• We had to do our own URL signing with mod_auth_token

• We had to copy our library across the world 6x
• We have to keep all regions in sync with S3/Ireland



New verdict
• Not cheaper
• Maximum control
• Awesome performance

FTW



What about live streaming?



Live streaming with Cloudfront
• We have very few and very small objects*
• We have a lot of users
• (still dispersed around the planet)

…resulting in many CACHE HITS.

*40 different objects, each under 2 MB

FTW



Further employments of Cloudfront
• DONE: static website assets (GFX/CSS/JS)
• DONE: static app content via JSON API
• NEXT: full site acceleration incl. dynamic content







Before Caching: 1460 ms



After Caching: 770 ms



Goal:

. sec



Cache as Much as You Can!



Cache as Much as You Can!
• Collect Logs From Your Web Tier



Cache as Much as You Can!
• Collect Logs From Your Web Tier

• Run a Report on Your Logs (EMR, RDS, Redshift)

• Identify Top N URLs



220 /index.jsp
200 /images/book1.gif
120 /css/style.css
119 /js/script1.js
110 /factory/create_image?name=book1&size=10x10
100 /api/GetBooks?category=math
90 /api/GetBooks?category=math&lang=spanish
80 /api/GetBooks?top=10



Static or Reusable
Content that does not change for a given period of time

t0 t1



Static or Reusable
Content that does not change for a given period of time
CloudFront caches content for any period of time:

Hours, Minutes, Seconds 

t0 t1



Content with Query Strings

Reusable?

110 /factor/create_image?name=book1&size=10x10



Content with Query Strings

Yes!

110 /factor/create_image?name=book1&size=10x10

• CloudFront can cache content with query strings
• Every unique query string combination is a new 

object in CloudFront’s cache



220 /index.jsp
200 /images/book1.gif
120 /css/style.css
119 /js/script1.js
110 /factory/create_image?name=book1&size=10x10
100 /api/GetBooks?category=math
90 /api/GetBooks?category=math&lang=spanish
80 /api/GetBooks?top=10



Why Caching for Smaller Time Units?

• Example: Read heavy API with 1000 requests per second

• Offload your web-tier from handling 1000 RPS

• Offload your load balancer

• Provision less capacity and reduce cost

1000 /api/GetBooks?top=10



How About the Base Page?

Reusable?
220 /index.jsp



Optimizing Dynamic Content



Response Time

DNS 
Lookup

TCP 
Connection

Time to First 
Byte

Content 
Download

DNS+ Connection+ First Byte+Content Download



Optimizing Response Time

DNS



Optimizing Response Time

DNS Amazon Route 53



Optimizing DNS Response Time

Amazon Route 53

• Managed DNS

• Fast

• Low latency

• Global network

• Queries routed to the nearest DNS server



Without Route 53



With Route 53



Optimizing Response Time

DNS Amazon Route 53



Optimizing Response Time
DNS

Connection

First Byte

Amazon Route 53



Optimizing Response Time
DNS

Connection

First Byte

Amazon Route 53

Amazon CloudFront

Amazon CloudFront
Keep Alive

Keep Alive



TCP/IP Hand Shake
• HTTP Runs on TCP/IP

• TCP uses TCP handshake

• TCP handshake costs time

• Every HTTP Connection needs to 

complete TCP Handshake

Amazon CloudFront



Two Users Without CloudFront
SYN

SYN-ACK

ACK

GET /index.jsp

ACK

SYN-ACK

GET /index.jsp

2nd User SYN

90ms

360ms

360ms

1st User



Keep Alive

2nd Request

SYN

SYN-ACK

ACK

GET /index.jsp

GET /index.jsp

1st Request



CloudFront Keep Alive
SYN

SYN-ACK

ACK

GET /index.jsp

GET /index.jsp

2nd User

360ms

180ms

SYN

SYN-ACK

ACK

GET /index.jsp

ACK

SYN-ACK

GET /index.jsp

SYN

30ms 60ms

1st User



CloudFront Keep Alive
• More Users ≠ More Connections

• Offloads Origin’s CPU/Memory

• Improves Response Time

Amazon CloudFront



Test CPU %

Without 
CloudFront 20 %

With CloudFront 6 %

CloudFront Keep Alive Test



Optimizing Response Time
DNS

Connection

First Byte

Amazon Route 53

Amazon CloudFront

Amazon CloudFront
Keep Alive

Keep Alive



Optimizing Response Time
DNS

Connection

First Byte

Amazon Route 53

Amazon CloudFront
Keep Alive

Keep Alive & SSL Termination
Amazon CloudFront



CloudFront SSL Termination
• CloudFront Supports SSL

• Terminate SSL at the Edge (Half-Bridge)

• Or Terminate SSL at the Edge and

Use SSL to the Origin as Well (Full-Bridge)

• Use CloudFront SSL Certificate

• Or Bring Your Own
Amazon CloudFront



Optimizing Response Time
DNS

Connection

First Byte

Amazon Route 53

Amazon CloudFront

Amazon CloudFront
Keep Alive

Keep Alive & SSL Termination



Optimizing Response Time
DNS

Connection

First Byte

Amazon Route 53

Amazon CloudFront

Amazon CloudFront
Keep Alive

Keep Alive & SSL Termination

Content Download
TCP/IP Optimizations

Amazon CloudFront



CloudFront TCP/IP Optimizations

Amazon CloudFront

• TCP Slow Start Optimizations



TCP Slow Start Optimization Performance Results

Test # Of 
Packets

Response Time Per 
Request

Response Time For 
200 Requests

Without 
CloudFront 2605 170 ms 33.876 ms

With 
CloudFront 896 96 ms 19.24 ms



CloudFront TCP/IP Optimizations

Amazon CloudFront

• TCP Slow Start Optimizations

• HTTP PUT/POST Optimizations



Optimizing Response Time
DNS

Connection

First Byte

Content Download

Amazon Route 53

Amazon CloudFront

Amazon CloudFront
Keep Alive

TCP/IP Optimizations

Keep Alive & SSL Termination

Amazon CloudFront



But You Can Do More



Route 53 Latency Based Routing

Route 53



Route 53 Latency Based Routing

Route53

• Create multiple stacks in different EC2 regions
• Create LBR records with geo information tags
• Route 53 routes users to the lowest latency endpoint
• Better performance and availability
• Easy to use, low cost
• With or without CloudFront



Lower Latency with CloudFront and Route 53



Lower Latency with CloudFront and Route 53



Lower Latency with CloudFront and Route 53



Lower Latency with CloudFront and Route 53



Lower Latency with CloudFront and Route 53



Lower Latency with CloudFront and Route 53



Lower Latency with CloudFront and Route 53



Lower Latency with CloudFront and Route 53



Lower Latency with CloudFront and Route 53



Lower Latency with CloudFront and Route 53



Lower Latency with CloudFront and Route 53



Lower Latency with CloudFront and Route 53



Lower Latency with CloudFront and Route 53



After CloudFront Dynamic Content Optimization: 
555 ms



Goal Reached!

. sec



Bonus: Fault Tolerance



Bonus: Fault Tolerance
• Route 53 Health Checks

• CloudFront Reduces Load on Your Origins

• CloudFront Works Together With Route 53
Latency Baced Routing

• CloudFront Fails Over to Cached Content

• CloudFront Customized Error Pages



Summary
• Accelerate all your content with CloudFront

• Use CloudFront with Route 53 latency-based 

routing to improve your performance

• Design for failure with CloudFront and Amazon 

Route 53 



© 2014 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified, or distributed in whole or in part without the express consent of Amazon.com, Inc.

Thank You!
Constantin Gonzalez
Alexander D. MacWilliam


